Employing Pythagorean Hodograph Curves for Artistic Patterns
نویسندگان
چکیده
In this paper we will present a novel design element creator tool for the digital artist. The purpose of our tool is to support the creation of vines, swirls, swooshes and floral components. To create visually pleasing and gentle curves we employ Pythagorean Hodograph quintic curves to join a hierarchy of control circles defined by the user. The control circles are joined by spiral segments with at least G continuity, ensuring smooth and seamless transitions. The control circles give the user a fast and intuitive way to define the desired curve. The resulting curves can be exported as cubic Bézier curves for further use in vector graphics applications.
منابع مشابه
On rational Minkowski Pythagorean hodograph curves
Minkowski Pythagorean hodograph curves are polynomial curves with polynomial speed, measured with respect to Minkowski norm. Curves of this special class are particularly well suited for representing medial axis transforms of planar domains. In the present paper we generalize this polynomial class to a rational class of curves in Minkowski 3-space. We show that any rational Minkowski Pythagorea...
متن کاملEndpoint hermit interpolation with cubic ball PH curves
The Pythagorean hodograph (PH) curves are polynomial parametric curves whose hodograph (derivative) components satisfy the Pythagorean condition. Lots of research works had been done with PH curves relevant topics due that PH curves own many remarkable properties, e.g., its offset curves have exact rational representations. In this paper, ball curves with rational polynomial offset are studied....
متن کاملG Pythagorean hodograph quintic transition between two circles
Walton & Meek [13] obtained fair G Pythagorean hodograph (PH) quintic transition Sand C-shaped curves connecting two circles. It was shown that an S-shaped curve has no curvature extremum and a Cshaped curve has a single curvature extremum. We simplified and completed their analysis. A family of fair PH quintic transition curves between two circles has been derived. We presented an algorithm wi...
متن کاملConstruction of Rational Curves with Rational Rotation-Minimizing Frames via Möbius Transformations
We show that Möbius transformations preserve the rotationminimizing frames which are associated with space curves. In addition, these transformations are known to preserve the class of rational Pythagorean-hodograph curves and also rational frames. Based on these observations we derive an algorithm for G Hermite interpolation by rational Pythagorean-hodograph curves with rational rotation-minim...
متن کاملPythagorean-hodograph cycloidal curves
In the paper, Pythagorean-hodograph cycloidal curves as an extension of PH cubics are introduced. Their properties are examined and a constructive geometric characterization is established. Further, PHC curves are applied in the Hermite interpolation, with closed form solutions been determined. The asymptotic approximation order analysis carried out indicates clearly which interpolatory curve s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta Cybern.
دوره 20 شماره
صفحات -
تاریخ انتشار 2011